LOCAL CONTRACTOR, EXPANSIVE REACH

With a strong local presence, access to a vast network of resources throughout North America and a focus on self-performing work, Kiewit can mobilize skilled craft and specialty equipment anywhere.
Keeping safety at the forefront, the Kiewit Foundations Group self-performs complex geotechnical projects across North America. We deliver creative, cost-efficient solutions that are responsive to each project’s site-specific conditions. By combining value-added engineering and constructability reviews with our in-depth expertise, we develop constructible solutions that optimize budget and schedule.

We’re able to accomplish what we do every day because of one of the largest and most modern privately owned equipment fleets in North America. It boasts 13,200 units with a replacement value of $2.1 billion.

WHAT SETS KIEWIT FOUNDATIONS GROUP APART?

- Safety record
- Innovative solutions
- Depth of expertise
- ISO 9001:2008 quality program
- Specialty equipment
- Self-performance

OUR PERFORMANCE

SELF-PERFORMING our work allows for RELIABLE budget and schedule forecasts.
OUR SERVICES

CUT-OFF WALL

Self-hardening seepage control for dams and levees
Temporary and permanent water-tight enclosure

STRUCTURAL SLURRY WALL

Tunnel shafts
Building foundations
Open cut excavation support

DRILLED SHAFTS

Drilled shafts
Bridges | Structures | Transmission
Deep drop/vent shafts for tunnels
Secant pile shafts

GROUND IMPROVEMENTS

ACIP pile
Displacement pile
Grout/concrete columns
Vibro compaction
Stone columns
Grouting
Soil mixing
Vibroflotation

6 7
Whether clients need to control ground water seepage in an excavated area or prevent seepage in dams, we’ll provide the cut-off wall execution to deliver high quality water-tight solutions for any water control need.
Clients working in soft earth near open water or with a high ground water table come to Kiewit because of our in-depth slurry wall expertise. Regardless of location — rural or urban — we have the necessary knowledge and experience needed to construct any slurry wall solution.

Tunnel shafts
Building foundations
Open cut excavation support

Clinton CSO, Syracuse, New York | Triple box culvert constructed using 177,138 square feet of slurry wall construction and a jet grout plug with cement bentonite wall for a base ground water cutoff.
Deep Rock Tunnel Connector, Indiana | Cement bentonite soldier pile application for three open cut excavations totaling 69,400 square feet

Harbor Sliphon Slurry Wall, New York | Excavation, reinforcement and concrete for a slurry wall as part of two launch shafts for a tunnel

World Trade Center East Bathtub Slurry Wall, New York City | 53 slurry wall panels of depths of 75 to 110 feet to form the basement of the Port Authority of New York and New Jersey (PATH) station and new World Trade Center site

Long Island Rail Road East Side Access, New York | 45,000-cubic-yard open cut excavation supported by a 28,300-square-foot slurry wall, 51 high-capacity tiebacks, sheet piles, concrete walers and steel bracing

World Trade Center East Bathtub Slurry Wall, New York City | Excavation, reinforcement and concrete for a slurry wall as part of two launch shafts for a tunnel

Deep Rock Tunnel Connector, Indiana | Cement bentonite soldier pile application for three open cut excavations totaling 69,400 square feet

Harbor Sliphon Slurry Wall, New York | Excavation, reinforcement and concrete for a slurry wall as part of two launch shafts for a tunnel

World Trade Center East Bathtub Slurry Wall, New York City | 53 slurry wall panels of depths of 75 to 110 feet to form the basement of the Port Authority of New York and New Jersey (PATH) station and new World Trade Center site

Long Island Rail Road East Side Access, New York | 45,000-cubic-yard open cut excavation supported by a 28,300-square-foot slurry wall, 51 high-capacity tiebacks, sheet piles, concrete walers and steel bracing

Deep Rock Tunnel Connector, Indiana | Cement bentonite soldier pile application for three open cut excavations totaling 69,400 square feet

Harbor Sliphon Slurry Wall, New York | Excavation, reinforcement and concrete for a slurry wall as part of two launch shafts for a tunnel

World Trade Center East Bathtub Slurry Wall, New York City | 53 slurry wall panels of depths of 75 to 110 feet to form the basement of the Port Authority of New York and New Jersey (PATH) station and new World Trade Center site

Long Island Rail Road East Side Access, New York | 45,000-cubic-yard open cut excavation supported by a 28,300-square-foot slurry wall, 51 high-capacity tiebacks, sheet piles, concrete walers and steel bracing

Deep Rock Tunnel Connector, Indiana | Cement bentonite soldier pile application for three open cut excavations totaling 69,400 square feet

Harbor Sliphon Slurry Wall, New York | Excavation, reinforcement and concrete for a slurry wall as part of two launch shafts for a tunnel

World Trade Center East Bathtub Slurry Wall, New York City | 53 slurry wall panels of depths of 75 to 110 feet to form the basement of the Port Authority of New York and New Jersey (PATH) station and new World Trade Center site

Long Island Rail Road East Side Access, New York | 45,000-cubic-yard open cut excavation supported by a 28,300-square-foot slurry wall, 51 high-capacity tiebacks, sheet piles, concrete walers and steel bracing

World Trade Center East Bathtub Slurry Wall, New York City | 53 slurry wall panels of depths of 75 to 110 feet to form the basement of the Port Authority of New York and New Jersey (PATH) station and new World Trade Center site

Deep Rock Tunnel Connector, Indiana | Cement bentonite soldier pile application for three open cut excavations totaling 69,400 square feet

Harbor Sliphon Slurry Wall, New York | Excavation, reinforcement and concrete for a slurry wall as part of two launch shafts for a tunnel

World Trade Center East Bathtub Slurry Wall, New York City | 53 slurry wall panels of depths of 75 to 110 feet to form the basement of the Port Authority of New York and New Jersey (PATH) station and new World Trade Center site

Long Island Rail Road East Side Access, New York | 45,000-cubic-yard open cut excavation supported by a 28,300-square-foot slurry wall, 51 high-capacity tiebacks, sheet piles, concrete walers and steel bracing
Kiewit’s drilled shaft experience runs deep and wide. Clients with infrastructure needs where large loads and lateral resistance are major factors rely on Kiewit because of our drilled shaft capabilities.
Bronx to Randall’s Island Utility Extension, New York | Secant pile shafts for micro tunnel starting and receiving pits; four shafts totaling 14,928 square feet and averaging 58 feet deep

PSE&G Susquehanna-Roseland Transmission Line, NJ and PA | 145-mile transmission line requiring installation of large diameter reinforced concrete drilled shaft foundations

Goethals Bridge, New York and New Jersey | New, six-lane 7,306.5-foot-long cable-stayed bridge with 138.4-foot navigational clearance, founded on marine- and land-based drilled shafts

Farrington and Kamehameha Guildways, Hawaii | 3.1-mile elevated guideway founded on 400 7- to 8-foot-diameter drilled shafts up to 150 feet deep

Maline Creek, Missouri | Nine blind bore drop and vent shafts ranging from 6 to 11 feet in diameter and up to 160 feet from grade, primarily in rock, utilizing reverse circulation cluster drill

Dulles Silver Line, Virginia | 179 72-inch-diameter shafts for the elevated guideway, 9,306 square feet of 4-inch-diameter secant pile retaining wall and 49 3- to 4-foot-diameter pedestrian bridge shafts

Commercial Point, Massachusetts | 231 36- and 42-inch-diameter drilled shafts for dike wall attenuation in an active LNG vaporization facility
When it comes to ground improvements, we are experienced executors in a wide array of techniques to increase bearing capacity and ground strength, reduce settlement and increase liquefaction resistance of soils.
Midtown Tunnel, Virginia | 1,221 vibrocompaction columns along the future pre-cast tunnel segment alignment

Jordan Cove Test Program, Oregon | Vibrocompaction test program with various installation methods and equipment to help define final design requirements

Huntington/Los Alamitos, California | Design-build ACIP over 4,000 columns plus 1,200 grouted inclusions for two future power generation sites with 18 piles tested in compression, laterally and in tension

Midtown Tunnel, Virginia | 1,221 vibrocompaction columns along the future pre-cast tunnel segment alignment
Tappanee Bridge, New York | 24 4-foot-diameter hard rock shafts for the Westchester Landing approach abutment and pier.

Canton Lake, Oklahoma | Installed 13 panels, 60 to 67 feet deep to construct 16,312 square feet of reinforced slurry wall for the United States Army Corps of Engineers.